Unique Enresdowed Graphs

Dr.P.Sumathi¹ Associate Professor, Department of Mathematics C. Kandaswami Naidu College for Men,Chennai E-mail:sumathipaul@yahoo.com

R.Esther Felicia² Ph.D Research Scholar Assistant Professor, Department of Mathematics Shri Krishnaswamy College for Women, Chennai E-mail:feliciakarthikeyan@yahoo.co.in

Abstract

Let G = (V, E) be a non empty, finite, simple graph. $k - \gamma_r$ enresdowed graph is one in which every restrained dominating set of cardinality k contains a minimum restrained dominating set. In this paper, we discovered a few outcomes for the $k - \gamma_r$ enresdowed graph related to private neighborhood.

Keywords : Dominating set , Domination number , Restrained Domination , Private Neighbour , enresdowed graphs.

1. Introduction

Let G = (V, E) be a non empty, finite, simple graph. A subset D of V(G) is called a dominating set of G if for every $v \in V - D$, there exists $u \in D$ such that u and v are adjacent [3]. The minimum cardinality of the dominating set is called the domination number and it is denoted by $\gamma(G)$. The Restrained dominating set of a graph is a dominating set in which every vertex in V - D is adjacent to some other vertex in V - D. The minimum cardinality of the restrained dominating set is called the restrained number and it is denoted by $\gamma_r(G)$. The minimum restrained dominating set is called as γ_r set[7]. An element u of pn(x,X) for x in X is called a private neighbor of x relative to X and is one either u is an isolate of G[X] in which case u = x or $u \in V - x$ and is adjacent to precisely one vertex of X. The open neighborhood N(v) of a vertex v in a graph G is the set of all vertices adjacent to v in G. The closed neighborhood N[v] of v is the set N(v) U{v}.

A restrained dominating set of a graph G containing a γ_r set of G is called a γ_r – enresdowed restrained dominating set of G. If that set is of cardinality k then it is called a k - γ_r enresdowed restrained dominating set[8]. A subset S of the vertex set in a graph G is said to be independent

ISSN(Online) : 2456-8910 International Journal of Innovative Research in Applied Sciences and Engineering (IJIRASE) Volume 1, Issue 2, DOI: 10.29027/IJIRASE.v1.i2.2017.66-72, August 2017

if no two vertices in S are adjacent[5]. The maximum number of vertices in an independent set of a graph G is called the independence number of G and it is denoted by $\beta_0(G)$.

Definition 1.1

Let *k* be a positive integer . A simple graph G = (V, E) is called a *k* - γ_r enresdowed graph if every restrained dominating set of G of cardinality k contains a γ_r set of G [8].

2. Main Results

Remark 2.1

- 1. Any graph of order p is p γ_r enresdowed and γ_r γ_r enresdowed.
- 2. If G is $k \gamma_r$ enresdowed then , $k \ge \gamma_r(G)$.
- 3. If $\gamma_r(G) \leq \Gamma_r(G)$, then G is $\Gamma_r \gamma_r$ enresdowed.
- 4. Let P_p be a path on p vertices , then P_p is $k \gamma_r$ enresdowed where

 $k = \begin{cases} n+2 & \text{if } p = 3n \\ n+1 & \text{Otherwise} \end{cases}$

Remark 2.2

Let G be a k - γ_r enresdowed graph , and β_0 is the maximum number of vertices in an independent set. β_0 and k are not related.

Illustration 2.3

Three different situations (i) $k = \beta_0$ (ii) $k > \beta_0$ (iii) $k < \beta_0$ are given in the following examples.

(i) In P_4 , γ_r -set is the set of pendant vertices such that $\gamma_r(P_4) = \beta_0(P_4)$.

 $P_4 : \underbrace{v_1 \quad v_2 \quad v_3 \quad v_4}_{V_1 \quad V_2 \quad V_3 \quad V_4}$

Let $D = \{v_1, v_4\}$, clearly D is a γ_r -set and β_0 -set. $\therefore \gamma_r = \beta_0 = 2$. Here k = 2. Therefore $k = \beta_0$ for P_4 .

(ii) In P₆, $\gamma_r(P_6)$ is the set of two pendant vertices and two leaf vertices so that $\gamma_r(P_6) = 4$ and where as in the case of β_0 the alternate vertices has been choosed. Thus $\beta_0(P_6) = 3$, also k = 4. Therefore $k > \beta_0$ for P₆.

(iii) In P_{10} , $D = \{v_1, v_4, v_7, v_{10}\}$ is a γ_r set where k = 4, and $D_1 = \{v_1, v_3, v_5, v_7, v_9\}$ is a β_0 set. Hence $\beta_0 = 5$. Therefore $k < \beta_0$ for P_{10} .

3. Theorems on $k - \gamma_r$ enresdowedness of graphs with its private neighbors

Theorem 3.1

Let G have no isolates, suppose G has a unique minimum restrained dominating set and s pendant vertices then G is not $k - \gamma_r$ enresdowed for any k,

$$p - s \le k \le p - 1$$

Proof

Let D be the unique γ_r set of G. Then there exist the following cases Case (1)

If $p - s < \gamma_r$, then it is not $(p - s) - \gamma_r$ enresdowed. If $p - s > \gamma_r$, then $S \cup K$ will form a restrained dominating set which will not contain the unique dominating set D.

Let $S = \{ \text{ pendants of } G \}$.

If suppose |S| = 1, then p - s = p - 1. Then, it is not $(p - s) - \gamma_r$ enresdowed.

If |S| = s, $s \ge 2$.

Let $K' = \{v \mid d(v) \neq 1 \text{ and } v \text{ is not adjacent to pendants}\}.$

Choose $K \subseteq K'$ such that

$$|\mathbf{K}| = \mathbf{p} - 2\mathbf{s} \text{ . Here } \mathbf{S} \cap \mathbf{K} = \boldsymbol{\varphi} \text{ .}$$

Then $|\mathbf{S} \cup \mathbf{K}| = |\mathbf{S}| + |\mathbf{K}| - |\mathbf{S} \cap \mathbf{K}|$
 $= \mathbf{s} + \mathbf{p} - 2\mathbf{s}$
 $|\mathbf{S} \cup \mathbf{K}| = \mathbf{p} - \mathbf{s} \text{ .}$

is the restrained dominating set. But it will not contain the point adjacent to the pendant vertex, which lies in the γ_r set. Thus in this case, G is not $(p - s) - \gamma_r$ enresdowed. i.e G is not $k - \gamma_r$ enresdowed for k .

Case (2)

If $\gamma_r ,$ $Let S = {pendant vertices of G}.$ $Let K' = {v | d(v) \neq 1 and v is not adjacent to pendants}.$ $If |S| = l and |\gamma_r| = k, then G is not k - \gamma_r enresdowed for any k,$ $<math>\gamma_r + j \le k \le p - 2$, with j = 1,2,3,...., p - (l + 3).

Definition 3.2

 International Journal of Innovative Research in Applied Sciences and Engineering (IJIRASE) Volume 1, Issue 2, DOI: 10.29027/IJIRASE.v1.i2.2017.66-72, August 2017

denoted by $D_{s_1,s_2,\ldots,s_1,\ldots,s_k}$. The vertices $u_1, u_2,\ldots, u_i, u_i, u_k$ are called nodes of the n - fan graph.

Remark 3.3

The n - fan graph has a unique γ_r set.

Definition 3.4

Let S be a set of vertices . Let $u \in S$, a vertex $v \in V(G)$ is said to be a private neighbor of u with respect to S if $N[v] \cap S = \{u\}$. Furthermore, the private neighbor set of u with respect to S is denoted by $pn(u,S) = \{v : N[v] \cap S = \{u\}\}[7]$.

Notation 3.5

Let G be a n - fan graph and $D = \{u_1, u_2, ..., u_i, ..., u_k\}$ be a unique γ_r set of G. Let $\eta = \min_{1 \le i \le k} \{|pn(u_i, D)|\}$, where $pn(u_i, D)$ is the private neighbour set of u_i with respect to D.

Theorem 3.6

Let G be a n - fan graph with nodes $u_1,\,u_2,\ldots\ldots,\,u_i$, $\ldots\ldots,u_k$, then every node has atleast four private neighbors in V-D.

Proof

Let D be the set of nodes. Therefore $D = \{u_1, u_2, \dots, u_i, \dots, u_k\}$. D is a unique γ_r set of G, for every $u_i \in D$ and for any $v_i \in pn(u_i, D)$ is adjacent with $v_{i+1} \in pn(u_i, D)$.

Suppose u_i has no private neighbor in V - D with respect to D. Since u_i is not an isolate or pendant of G, there exists a vertex $v_j \in N$ $(u_i) \cap (V - D)$ which is adjacent to any vertex of the set $\{u_1, u_2, \ldots, u_{i-1}, u_{i+1}, \ldots, u_{k-1}\}$. Then there exist a set $D_1 = \{u_1, u_2, \ldots, u_{i-1}, v_j, u_{i+1}, \ldots, u_k\}$. u_i is dominated by v_j and any neighbor of u_i is dominated by $D_1 - v_j$. Therefore D_1 is a γ_r set of G, a contradiction. Therefore every $u_i \in D$ has a private neighbor in V - D. with respect to D.

Suppose if u_i has exactly one private neighbor v_j in V - D with respect to D. Then v_j must be either a pendant or it is adjacent to some vertex v_{j+1} in V - D, where v_{j+1} is adjacent to any $u_j \in D$, $1 \le j \le k - 1$. Then the graph G is not unique.

Suppose if u_i has exactly two private neighbors v_j and v_{j+1} in V - D with respect to D. Then the vertices u_i , v_j and v_{j+1} form a cycle C_3 . Then the graph G is not unique.

Suppose u_i has exactly three private neighbors in V - D with respect to D. Let $\{v_{i-1}, v_i, v_{i+1}\}$ be the set of three adjacent private neighbors of u_i , then there exist a set

 $\begin{array}{l} D_2=\{u_1,\,u_2,\ldots\ldots,\,u_{i-1}\,,\,v_j\,,u_{i+1},\ldots\ldots,u_k\}. \mbox{ Choose } v_j \mbox{ such that } d(v_j)=\Delta\,,\,\mbox{ then } v_j \mbox{ is adjacent with } u_i\in D \mbox{ and also with } v_{j-1}\mbox{ and } v_{j+1}\mbox{ in } V-D.\ v_j \mbox{ dominates } u_i \mbox{ and its neighbors } v_{j-1}\mbox{ and } v_{j+1} \mbox{ and } v_{j-1}\,,\,u_i\,,\,v_{j+1}\mbox{ are adjacent in } V-D.\ \mbox{ Therefore } D_2 \mbox{ is a } \gamma_r \mbox{ set of } G\,,\,\mbox{ a contradiction }. \mbox{ Therefore every } u_i\in D\mbox{ has at least four private neighbors in } V-D\mbox{ with respect to } D. \end{array}$

Theorem 3.7

Let G be a n - fan graph with nodes u_1 , u_2 ,, u_i ,, u_k . Let $\eta = \min_{1 \le i \le k} \{|pn(u_i, D)|\}$, then there exist an s, $1 \le s \le k$ such that $pn(u_s, D) = \eta$. Then $(D - \{u_s\}) \cup (pn(u_s, D) - \{u_{sj}\})$, $u_{sj} \in pn(u_s, D)$ is a restrained dominating set of G of cardinality $k + \eta - 2$.

Proof

Let D = { $u_1, u_2, \ldots, u_s, \ldots, u_k$ } be a unique γ_r set of G.

Let $\eta = \min_{1 \le i \le k} \{ |pn(u_i, D)| \}$, then there exist an s, $1 \le s \le k$ such that $pn(u_s, D) = \eta$. Let $pn(u_s, D)$ set is $\{u_{s1}, u_{s2}, u_{s3}, \dots, u_{st}\}$ $t \ge 4$, Consider the set,

 $(D - \{ u_s \}) = \{u_1, u_2, \dots, u_{s-1}, u_{s+1}, \dots, u_k\}$ and its cardinality is k - 1, where $(D - \{ u_s \})$ set dominates all its private neighbor and the induced subgraph of the private neighbour is either a path or union of k_2 . Consider the set $(pn(u_s, D) - \{u_{sj}\}), 1 \le j \le t$. Then consider the set $(D - \{ u_s \}) \cup (pn(u_s, D) - \{u_{sj}\})$ that is,

$$\begin{split} D_1 &= \{u_1, u_2, \ldots, u_{s-1}, u_{s+1}, \ldots, u_k, u_{s1}, u_{s2}, u_{s3}, \ldots, u_{sj-1}, u_{sj+1}, \ldots, u_{st}\} \text{ is a new} \\ \text{restrained dominating set. Therefore, the cardinality of the set } D_1 \text{ is the sum of the cardinality of } \\ \text{the } (D - \{u_s\}) \text{ set and the cardinality of } (pn(u_s, D) - \{u_{sj}\}). \end{split}$$

Hence $|D_1| = k + t - 2 = k + \eta - 2$. Moreover, $k + \eta - 2$ is always greater than or equal to k + 2, since $\eta \ge 4$.

Proposition 3.8

Let G be a n - fan graph with nodes $u_1, u_2, \ldots, u_i, \ldots, u_k$, then $\gamma_r(\langle pn(u_i, D) \rangle \ge 2$.

Proof

Let G be a n - fan graph with nodes. Let D be the set of nodes. Therefore, $D = \{u_1, u_2, \ldots, u_i, \ldots, u_k\}$. D is a unique γ_r set of G. Since for any $u_i \in D$, the $\langle pn(u_i, D) \rangle$ is either a path of length greater than or equal to 4 or union of k_2 , then the γ_r set is always greater than or equal to 4.

Proposition 3.9

Let G be a n - fan graph with unique γ_r set, $D = \{u_i\}_{i=1}^m$, $m \ge 2$ and $\langle pn(u_i, D) \rangle$ be a path with s_i vertices, where $s_i \ne s_j$, for $i \ne j$, $1 \le i$, $j \le m$, $s_i, s_j \ge 4$ and atleast one $s_i = 4$.

Then G is $\gamma_r - \gamma_r$ enresdowed but not m - γ_r enresdowed for any m, $\gamma_r+1 \le m \le \sum_{\substack{i=1 \ i \ne m}}^m s_i - (\gamma_r + 1)$.

Proof

Let G be a graph with unique minimum restrained dominating set, D = { u_1 , u_2 ,, u_i ,, u_m }, $m \ge 2$. Let $(pn(u_i, D))$ is a path with s_i vertices, where $s_i \ne s_j$, for $i \ne j$, $1 \le i, j \le k$, $s_i, s_j \ge 4$.

For the vertex u_1 , let $\langle pn(u_1, D) \rangle$ be a path with the vertex $\{v_1, v_2, \ldots, v_{s_1}\}$, $s_1 \ge 4$. In general for the vertex u_i , let $\langle pn(u_i, D) \rangle$ be a path with the vertex , $\{v_{s_{i-1}+1}, v_{s_{i-1}+2}, \ldots, v_{s_i}\}$, $s_i \ge 4$. The vertex set of G is $\{u_1, u_2, \ldots, u_i, \ldots, u_m, v_1, v_2, \ldots, v_{s_1}, \ldots, v_{s_{i-1}+1}, v_{s_{i-1}+2}, \ldots, v_{s_i}, \ldots, v_{s_{m-1}+1}, v_{s_{m-1}+2}, \ldots, v_{s_m}\}$, where each s_i vertices are dominated by u_i , $1 \le i \le m$. Since $D = \{u_1, u_2, \ldots, u_i, \ldots, u_m\}$ is the γ_r set of G. Clearly G is $\gamma_r - \gamma_r$ enresdowed.

Without loss of generality,let $s_i = 4$. Consider a set D_1 in such a manner where $D_1 = \{u_1, u_2, ..., u_{i-1}, u_{i+1}, ..., u_m, v_{s_{i-1}+1}, v_{s_i}\}$ of cardinality m_1 , where $m_1 = \gamma_r + 1$ and $v_{s_{i-1}+1}, v_{s_i}$ belong to a set of vertices of $\langle pn(u_i, D) \rangle$. If suppose $\langle pn(u_i, D) \rangle$ is a P_4 , then D_1 is a restrained dominating set without D of cardinality $\gamma_r + 1$. Therefore G is not $m_1 - \gamma_r$ enresdowed for any m_1 , $m_1 = \gamma_r + 1$.

Consider a sets of cardinality m, where $m > \gamma_r + 1$, the path $\langle pn(u_i, D) \rangle 1 \le i \le m - 1$ is of three types namely , P_{3i} , $(i \ge 2)$, P_{3i+1} , and P_{3i+2} , $(i \ge 1)$. Consider the path P_{3i} , $(i \ge 2)$. Let the vertex set of P_{3i} , $(i \ge 2)$ be $P_{3i} = \{v_{s_i-1}+1, v_{s_i-1}+2, ..., v_{s_i}\}$, $s_i \ge 4$. For the path of type P_{3i} consider a set $D_{3i} = \{u_1, u_2, ..., u_{3i-1}, u_{3i+1}, ..., u_{m-1}\} \cup \{v_{s_{3i}-1}+2, v_{s_{3i}-1}+3, ..., v_{s_{3i}-1}\}$. D_{3i} is of cardinality $(s_{3i} - 2 + m - 2)$. Consider the path P_{3i+1} , $(i \ge 1)$. For the path of type P_{3i+1} consider a set $D_{3i+1} = \{u_1, u_2, ..., u_{3i}, u_{3i+2}, ..., u_{m-1}\} \cup \{v_{s_{3i+1}-1}+2, v_{s_{3i+1}-1}+3, ..., v_{s_{3i+1}-1}\}$ D_{3i+1} is of cardinality $(s_{3i+1} - 2 + m - 2)$. Similarly consider the path P_{3i+2} , $(i \ge 1)$. For the path of type path of type P_{3i+2} consider a set $D_{3i+2} = \{u_1, u_2, ..., u_{3i+1}, u_{3i+3}, ..., u_{m-1}\} \cup \{v_{s_{3i+2}-1}+2, v_{s_{3i+2}-1}+3, ..., v_{s_{3i+2}-1}+2, v_{s_{3i+2}-1}+3, ..., v_{s_{3i+2}-1}+3$ \dots , $v_{s_{3i+2}-1}+3$ \dots .

Let
$$D_1 = \left(\bigcup_{\substack{i > 1 \\ 3i \neq m}} D_{3i}\right) \cup D_m$$
, $D_2 = \left(\bigcup_{\substack{i \ge 1 \\ 3i+1 \neq m}} D_{3i+1}\right) \cup D_m$, $D_3 = \left(\bigcup_{\substack{i \ge 1 \\ 3i+2 \neq m}} D_{3i+2}\right) \cup D_m$.
Take $D_4 = \left(\bigcup_{\substack{i > 1 \\ 3i \neq m}} D_{3i}\right) \cup \left(\bigcup_{\substack{i \ge 1 \\ 3i+1 \neq m}} D_{3i+1}\right) \cup \left(\bigcup_{\substack{i \ge 1 \\ 3i+2 \neq m}} D_{3i+2}\right) \cup D_k$. D_4 is a

restrained dominating set of cardinality $\sum_{\substack{i=1 \ i \neq m}}^{m} s_i - (\gamma_r + 1)$, which does not contain the u_m . Hence D_4 is a restrained dominating set not containing D. Hence G is not $m - \gamma_r$ enresdowed for the values of m, $\gamma_r + 1 \le m \le \sum_{\substack{i=1 \ i \neq m}}^{m} s_i - (\gamma_r + 1)$.

4. Conclusion

In this paper, we discovered a few outcomes for the k - γ_r enresdowed graph related to private neighborhood.

References

- [1] Berge .C , Some common properties for reqularizable graphs, Edge critical graphs and B graphs, Lecture notes in Computer Sciences, Graph Theory and Algorithms, Proc. Symp. Res . Inst. Electro. Comm., Tohoku Univ , Sendi, 1980, Vol. 108, 108 123. Berlin 1987.
- [2] Bondy .J.A and Murty U.S.R, Graph Theory with Applications, The MacMillan Press, London, 1976.
- [3]Chartrand, L .Lesniak, Graphs and Digraphs, Second ed., Wadsworth and Brooks/Cole, Monterey CA,1986.
- [4] Cockayne.E and Hedetniemi.S, Towards a theory of domination in graphs, Networks Fall,1977 ,pp.247 261.
- [5] Domke.G.S,Hattingh.J.H,Hedetniemi.S.T,Laskar.R.C.,Markus.L.R, Restrained domination in graphs, Discrete Math.203,1999, pp.61 69.
- [6] Harary.F, Graph Theory, Addison Wesley, Reading Mass, 1972.
- [7] Haynes.T.W,Hedetniemi.S.T.Slater.P.J., Domination in Graphs, The Theory, Marcel Dekker, New York ,1998.
- [8]Sumathi.P, Esther Felicia.R, Enresdowed graphs II, Global Journal of Pure and Applied Mathematics, Special Issue Vol. 13(1),2017 pp.229-232.