
ISSN(Online) : 2456-8910

International Journal of Innovative Research in Applied Sciences and Engineering (IJIRASE)
 Volume 1, Issue 2, DOI: 10.29027/IJIRASE.v1.i2.2017.44-50, August 2017

Vol 1 (2) August 2017 www.ijirase.com 44

New Frameworks for Automated Test and Retest (ATRT) Test Case

Requirement Traceability Matrix

R.Padmavathi

Research Scholar D.B.Jain College

Autonomous Chennai-97

elangotesting@gmail.com

P.Saravanan

Asst Professor Department of Computer Science,

D.B.Jain College Autonomous Chennai-97

npsindian@yahoo.co.in

ABSTRACT- In the software testing domain

the research paper implementing automated

test and retest (ATRT) is one of the an

Innovative technical solution provider that

solves the uniqueness testing problem the

ATRT is one of the numerous automated

testing tools. The ATRT is a one of the way

that handle are related test cases and test

management activities, the test case

processing. The processing is a hierarchical

break down of test cases into test scenario

and test steps and test sub steps the user to

import their requirement and map test cases

to requirements. In the research Framework

successfully built by reusing the test cases

in the research paper implementing

continuous improvements and continuous

integration. The integration merging and

testing, test case requirements through the

frequent intervals applying in this method

prevent integration problem and increasing

quality control and improved technical

performance, decrease cost and increasing

speed. The automated testing using matrix

technology accessing and improving

customer requirements the automated

testing process. The process and tracking

its status and matrix is a standard of

measurement, a metrics can be performed

at as a measure can utilized and

implementing to display past and present

performance and predicting future

performance.

Keywords: Software testing, ATRT,

mapping test cases, Requirements, Test

coverage

1. Introduction

ATRT automated testing and retesting is an

automated tool the tool capability that can

be applied across the entire system testing

lifecycle, the testing result in broader test

coverage, to increased efficiency and

improved quality. It supports the

functional, interface, longevity and

performance testing of legacy systems,

systems being modernized and new

systems under development. This patented

technology has transformed the

mailto:elangotesting@gmail.com

ISSN(Online) : 2456-8910

International Journal of Innovative Research in Applied Sciences and Engineering (IJIRASE)
 Volume 1, Issue 2, DOI: 10.29027/IJIRASE.v1.i2.2017.44-50, August 2017

Vol 1 (2) August 2017 www.ijirase.com 45

development of many complex systems;

Regression testing is a type of software

testing that involves retesting software after

changes or enhancements have been

introduced to a system. As a result, one of

the goals of regression testing is to assess

whether functionality previously delivered

continues to operate as expected some

changes. The most common technique

used to meet regression testing. The testing

goals are through assessing requirements

previously verified. Automated regression

testing applies an automated test strategy to

the regression testing effort and efficiency.

The automated test strategy was to

apply Automated Test and Retest

(ATRT) technology to support the project’s

need to expand their regression test

coverage from approximately 15% to more

than 92% while at the same time not

increasing the time allocated for regression

testing. The current manual test doing

regression tests were conducted by

stimulating the software by injecting

signals into the system and then observing

the operator screens to check for status and

alarms. The change would be sent to the

pressure gauge by lowering the pressure

below a certain threshold. Then actual

output values would be observed on the

operator console to determine if the

software had correctly detected the change

and sent the necessary “low pressure”

alarm. After reviewing the nature of the

manual tests, IDT adopted that the

application of ATRT: Test Manager would

facilitate meeting the project’s objectives.

The Test Manager is designed to support

large, complex systems of this type and

provides the capability to automate

operator inputs/actions and verify the

responses.

1.1 Traceability Matrix

In the research focus of any testing

engagement is crossed should be maximum

test coverage to coverage, it simply means

that we need to test everything there is to

be tested. The aim of any testing project

should be 100% test coverage.

Requirements Traceability Matrix to begin

with, establishes a way to make sure the

project place checks on the coverage

aspect. It helps in creating a snap shot to

identify coverage gaps.

1.2 Test Automation

Automated testing tools are capable of

executing tests, reporting outcomes and

comparing results with

earlier test runs. Tests carried out with

these tools can be run continuously, at any

time of day to day. The method or process

being used to implement automation is

called a test automation framework. Vastly

https://idtus.com/what-is-automated-software-testing/
https://idtus.com/atrt-automated-test-and-retest/
https://idtus.com/atrt-automated-test-and-retest/
https://idtus.com/atrt-automated-test-and-retest/
https://idtus.com/products/atrt-test-manager/

ISSN(Online) : 2456-8910

International Journal of Innovative Research in Applied Sciences and Engineering (IJIRASE)
 Volume 1, Issue 2, DOI: 10.29027/IJIRASE.v1.i2.2017.44-50, August 2017

Vol 1 (2) August 2017 www.ijirase.com 46

Increases In the test coverage

Automated software testing Can increase

the depth and scope of tests to help

Improve software quality.

Lengthy tests that are often avoided during

manual testing can be run unattended. They

can even be run on multiple computers with

different configurations.

Fig-1 Automation Testing Framework

The test automation framework is defined

as a set of assumptions concepts and

practices that constitute a work plat form or

support for automation testing

2. RELATED WORK

In the Author Blackwell, Barry Mark, et al.

[1] describes in the paper The testing tool

includes an Automated Multidimensional

Traceability Matrix system for determining

linkages between interrelated system

components, a means for identifying a

change in one or more of the interrelated

system components, a means for applying

the Automated Multidimensional

Traceability Matrix, a means for executing

all of or a subset of the test scenarios

associated with the interrelated system

components that may be affected by the

change and a means for evaluating the

results of the executed test scenarios.

The author discussed in the paper [2]

Oliveto, Rocco, et al. The analysis is based

on Principal Component Analysis and on

the analysis of the overlap of the set of

candidate links provided by each method.

The studied techniques are the Jensen-

Shannon (JS) method, Vector Space Model

(VSM), Latent Semantic Indexing (LSI),

and Latent Dirichlet Allocation (LDA). The

results show that while JS, VSM, and LSI

are almost equivalent, LDA is able to

capture a dimension unique to the set of

techniques which we considered.

In the author discussed in the paper [10]

Ståhl, Daniel, Kristofer Hallén, and Jan

Bosch.etl.. "Achieving traceability in large

scale continuous integration and delivery

deployment, usage and validation of the

eiffel framework." Empirical Software

Engineering (2017) This paper presents,

investigates and discusses Eiffel, an

industry developed solution designed to

provide real time traceability in continuous

integration and delivery. The traceability

ISSN(Online) : 2456-8910

International Journal of Innovative Research in Applied Sciences and Engineering (IJIRASE)
 Volume 1, Issue 2, DOI: 10.29027/IJIRASE.v1.i2.2017.44-50, August 2017

Vol 1 (2) August 2017 www.ijirase.com 47

needs of industry professionals are also

investigated through interviews, providing

context to that solution. It is then validated

through further interviews, a comparison

with previous traceability methods and a

review of literature. It is found to address

the identified traceability needs and found

in some cases to reduce traceability data

acquisition times from days to minutes,

while at the same time alternatives

offering comparable functionality are

lacking. In this work, traceability is shown

not only to be an important concern to

engineers, but also regarded as a

prerequisite to successful large scale

continuous integration and delivery. At the

same time, promising developments in

technical infrastructure are documented

and clear differences in traceability

mindset between separate industry projects

is revealed.

In the author Warfield, Robert W discussed

in the paper [11]. "Automatic software

testing tool." U.S. Patent No. 5,754,760. 19

May 1998. The software module has a

number of possible states. A set of state

machines is created which represent a

definition for either a user interface or an

application program interface (API) of the

software module in terms of the possible

states. From the state machines, a set of test

cases is automatically generated, such that

each test case consists of code for

manipulating the user interface or API. A

genetic algorithm creates populations of

test scripts from the test cases, in which

each test script includes a number of test

cases. Each test script from each successive

generation of test scripts is executed by

applying the script as input to the software

module. A code coverage analyzer provides

a measure of code coverage to the genetic

algorithm for each test script. The genetic

algorithm uses the measure of code

coverage as a fitness value in generating

future populations of test scripts and in

determining a best script.

AUTOMATION TESTING, TESTCASE

REQUIREMENT, TRASABLITY

MATRIX FRAMEWORK

Fig-2 Traceability Matrix

The unexpected and unplanned changes as

well as the fact the continuous maintained

and growth the software Requirement

ISSN(Online) : 2456-8910

International Journal of Innovative Research in Applied Sciences and Engineering (IJIRASE)
 Volume 1, Issue 2, DOI: 10.29027/IJIRASE.v1.i2.2017.44-50, August 2017

Vol 1 (2) August 2017 www.ijirase.com 48

Management is to handle traceability the

main purpose to implement Bi-directional

trace between requirements and

components

FIG-3

Example Trasability Matrix Test cases

and Requirement Test cases

Reqs

ID

Req

s ID

Use

cas

e

1.1

Use

cas

e

1.2

Use

cas

e

1.3

Use

cas

e

1.4

Use

cas

e

1.5

Test

case

s

250 2 2 3 2 2

1.1 2 X X X

1.2 2 X X

1.3 2 X X

1.4 2 X X

1.5 2 X X

FIG-4

The above Table like needed if the right

tools and automated tests automated

acceptance tests in traceability the

requirement traceability tool have used in

the above diagram this also positive effects

on maintainability of our code acceptance

tests and requirement specification

 The research work using automation
tool in test rail to get all the test cases
of type Automation (Type_id =3) for
that work

JArray response = (JArray)
api.SendGet("get_cases/" +
projectId + "/&type_id=3");

I then create an array with all the test
case ids and then pass that to the
create test run API call. ("add_run/").

 var data = new
Dictionary<string, object>
 {
 { "suite_id", 1 },
 { "name", "Test
Run From Framework" },
 { "include_all",
false },
 { "case_ids",
testCaseIds }
 };

 JObject
testRailResponse =
(JObject)api.SendPost("add_run
/" + projectId, data);

This will then create a test run with
only automated tests in the run. The

ISSN(Online) : 2456-8910

International Journal of Innovative Research in Applied Sciences and Engineering (IJIRASE)
 Volume 1, Issue 2, DOI: 10.29027/IJIRASE.v1.i2.2017.44-50, August 2017

Vol 1 (2) August 2017 www.ijirase.com 49

test just goes through and updates
each test with pass or fail

integrate an existing automation

framework targeting an end-to-end

integration

Fig-5

the test rail test cases since the automation

test scripts contain the info if you do put

steps, expected results in test rail, how do

you keep them in-sync with the actual test

scripts we were thinking of leaving test rail

test cases essentially empty with a small

description in an automation-driven

workflow where you have both devs/QA

writing automation scripts, does the Test

rail is a one of the too the tool become

solely a repository of results produces

Currently, to performance good automation

tests, the "test run" is constructed in Jenkins

by inspection of the automation folder in

source code, not Test rail

 CONCLUSION

In this Research work successfully

implementing ATRT test case requirement

Traceability matrix in the paper

Implementing Automated Software

Testing. And retesting The Automation

testing can reduce the time and cost the

testing improve software quality, and

improve software test programs in

measurable performance and significant

ways of improved software quality, among

other major benefits. With manual software

testing, it is difficult to repeat tests. The

steps taken during the first run of a test will

not be the exact steps followed during a

second iteration. Without qualified,

repeated tests it is difficult to produce

quality measurements. Automated software

testing allows for test optimization and

quality metrics because automated tests can

be easily repeated and results measured.

The measuring test case analysis of

qualified measurements supports efforts to

optimize tests only when tests are

repeatable. Automated Software Testing

can support each phase of the software

development lifecycle (SDLC). There are

automated tools to assist the requirements

definition phase and help produce test-

ready requirements. These minimize the

test effort and the cost of testing. The

testing tools to support the design phase,

coding, testing phases such as modelling

tools, the record requirements within use

test cases.

ISSN(Online) : 2456-8910

International Journal of Innovative Research in Applied Sciences and Engineering (IJIRASE)
 Volume 1, Issue 2, DOI: 10.29027/IJIRASE.v1.i2.2017.44-50, August 2017

Vol 1 (2) August 2017 www.ijirase.com 50

6 References

[1] Blackwell, Barry Mark, et al. "Testing

tool comprising an automated

multidimensional traceability matrix for

implementing and validating complex

software systems." U.S. Patent No.

7,490,319. 10 Feb. 2009.

[2] Oliveto, Rocco, et al. "On the

equivalence of information retrieval

methods for automated traceability link

recovery." Program Comprehension

(ICPC), 2010 IEEE 18th International

Conference on. IEEE, 2010.

[3] Lormans, Marco, and Arie Van

Deursen. "Can LSI help reconstructing

requirements traceability in design and

test?." Software Maintenance and

Reengineering, 2006. CSMR 2006.

Proceedings of the 10th European

Conference on. IEEE, 2006.

[4] Cleland-Huang, Jane. "Toward

improved traceability of non-functional

requirements." Proceedings of the 3rd

international workshop on Traceability in

emerging forms of software engineering.

ACM, 2005.

[5] Bouquet, Fabrice, et al. "Requirements

traceability in automated test generation:

application to smart card software

validation." ACM SIGSOFT Software

Engineering Notes. Vol. 30. No. 4. ACM,

2005.

[6] Yang, Meihong, et al. "An ontology

based improved software requirement

traceability matrix." Knowledge Acquisition

and Modeling, 2009. KAM'09. Second

International Symposium on. Vol. 1. IEEE,

2009.

[7] Hayes, Jane Huffman, Alex Dekhtyar,

and Senthil Karthikeyan Sundaram.

"Improving after-the-fact tracing and

mapping: Supporting software quality

predictions." IEEE software 22.6 (2005):

30-37.

[8] Hall, Ronald J., Richard A. Fournier,

and Paul Rich.Introduction." Hemispherical

Photography in Forest Science: Theory,

Methods, Applications. Springer

Netherlands, 2017. 1-13.

[9] Hoffman, Daniel, Paul Strooper, and

Lee White. "Boundary values and

automated component testing." Software

Testing, Verification and Reliability9.1

(1999): 3-26.

[10] Ståhl, Daniel, Kristofer Hallén, and

Jan Bosch. "Achieving traceability in large

scale continuous integration and delivery

deployment, usage and validation of the

eiffel framework." Empirical Software

Engineering (2017): 1-29.

[11] Warfield, Robert W. "Automatic

software testing tool." U.S. Patent No.

5,754,760. 19 May 1998.

